Southwest General Medical Center TEG Resources

TEG Clinical Specialist

- Louis Nicholson BSN RN Louis.nicholson@haemonetics.com 440-420-2360
- Available for in person clinical consultation regarding TEG Education, Interpretation and support

College of TEG E-Learning: Online Access Instructions

- 1. Go to <u>https://tegtraining.haemonetics.com</u>
- 2. Enter your account details when prompted
 - a. Account Name: SWGeneral
 - b. Account Password: teg522
- 3. Select desired training module or assessment
- 4. Enter your first and last name and Submit to begin the module
- 5. Courses take approximately ½ hour, progress is **tracked**, allowing you to come back to complete.

Haemonetics Online Resources www.haemonetics.com

- <u>TEG References</u>
- <u>TEG Top Literature Resources</u>
- PlateletMapping Studies
- "badge buddies" and clinical guide
- ☐ 1-800-GET-A-TEG
 - 24/7 Support

Haemonetics Support and Resources

Haemonetics Grant Program application

http://haemonetics.com/en/about/grants/grant-program

Haemonetics Medical Affairs Team: haemoneticsMedInfo@haemonetics.com

- Literature lists/searches
- Protocol collaboration, clinical problem solving and program networking

DOCMatter—Peer to Peer TEG Discussion Forum: www.docmatter.com

- Independent of Haemonetics, allows for international collaboration between TEG users, researchers and clinicians/laboratorians.
- Webinars, Case Studies etc.
- Free registration

INTEGRATED DEVICES

This guide is not intended as a substitute for the TEG® 5000 System User Manual.

Please refer to the TEG[®] 5000 System User Manual for Indications for Use, Contraindications, Warnings, Precautions, and Potential Adverse Events.

Results from the TEG analysis should not be the sole basis for a patient diagnosis, but should be evaluated together with the patient's medical history, the clinical picture and, if necessary, further hemostasis tests.

TEG[®]5000 Clinical Aid

Hotline 1.800.GET.A.TEG

Test Purpose

Test	Clinical Opportunity	TEG Samples*	Clot Formation Measurements
General Hemostasis	 Pre screening Perioperative ICU Maintenance 	K / CK PlateletMapping® Assay	 Coagulation factor function Platelet function — without platelet inhibitor effect Abnormal lysis
Heparin Effect and Heparin Reversal	Pre screeningPerioperativeICU	K / CK (plain cup) KH / CKH (blue cup)	 Comparison demonstrates the magnitude of heparin effect Coagulation factor function Platelet function — without platelet inhibitor effect Abnormal lysis
Antiplatelet Therapy	 Pre screening Perioperative ICU 	PlateletMapping [®] Assay	 % platelet inhibition relative to agonist Platelet function baseline Coagulation factor function Abnormal lysis
Fibrinogen/Platelets	Pre screeningPerioperativeICU	FF & K / CK	Comparison demonstrates the individual contribution of fibrin and platelets to the clot

* K = Kaolin; CK = Citrated Kaolin; KH = Kaolin Heparinase; CKH = Citrated Kaolin Heparinase;

FF = Functional Fibrinogen; CFF = Citrated Functional Fibrinogen

Parameter	Definition	Units
R	Reaction time, first measurable clot formation	minutes
K	Achievement of certain clot firmness	minutes
Angle (α)	Kinetics of clot development	angle in degrees
MA	Maximum amplitude, maximum strength of clot	mm
G	Strength of clot	kdyn/cm²
LY30	Percent lysis 30 minutes after MA	%

P/N 06-538-US(AB)

Parameters

Tracing Interpretation

Data (page 1 of 2)

Therapy	TEG Parameter Most Affected		
Anticoagulant	↑ R	Increase R (longer)	
Platelet Inhibitor	↓ MA _{ADP/AA}	Decrease MA of ADP or AA sample in PlateletMapping [®] assay	
Fibrinogen	↑ MA _{FF}	Increase MA	
Fibrinolytic	↑ LY30	Increase LY30	
Procoagulant	↓ R	Decrease R (shorter)	
Platelet Enhancer	↑ MA	Increase MA	
Antifibrinolytic	¥ LY30	Decrease LY30*	

*A change in lysis will only be seen if there is significant lysis present.

TEG Analysis Tree

The following chart also applies to Citrated Kaolin.

Analysis - Kaolin (page 1 of 2)

P/N 06-538-US(AB)

Additional notes for TEG Analysis Tree

Heparinase cups: If plain and blue cup samples were run and patient is not heparin treated, it is advised to evaluate coagulopathy based on the plain cup sample to more closely match in vivo conditions.

Hypothermia: If the patient is hypothermic, a split sample may be run: one sample at the patient's body temperature and a second sample at 37° C.

Rewarming samples: Values in the treatment are based on kaolin activated samples run at 37° C. Running samples at lower temperatures will affect parameter values and should be accounted for when using the analysis tree.

Footnotes for TEG Analysis Tree

- 1. Normal results may be obtained for a bleeding patient. If normal TEG results are obtained and patient is bleeding:
 - a. Rule out Von Willebrand factor dysfunction Clot formation may be normal, but clot may not adhere to the damaged vascular site due to poor platelet-tosubendothelial bonding.
 - b. Rule out platelet dysfunction Use PlateletMapping assays to determine platelet function via ADP and AA.
 - c. **Mechanical bleeding** If vWF deficiency and platelet dysfunction have been ruled out, consider surgical bleeding.
- Increased R values in a kaolin (K) or citrated kaolin (CK) sample are seen when heparin is present. Comparing a kaolin (K or CK) sample with heparinase (KH or CKH) sample from the same blood sample will demonstrate the effect of heparin.
- It is very important to distinguish between primary and secondary fibrinolysis as treatment regimens are significantly different.
- This tracing demonstrates conflicting coagulopathies. The degree of each coagulopathy should be considered as well as the patient's clinical status and previous test results.

To View Results File Becords QC Options Help 100 2 199 Click Multi. (U) 1. Multi Select tracings in this order: 2. Kaolin (K, CK, KH, or CKH) . Activator (A) . ADP or AA . N 3. Click Done. Done

To Assess Results

- 1. View the % inhibition in the PM window.
- 2. For underlying hemostasis, view the Kaolin results (white tracing).
- For agonist-induced activation, view the ADP or AA results (green tracing).

PlateletMapping[®]

Heparin (K vs. KH)

 $R_{KH} < R_{K}$

Suggests heparin not reversed.

Legend Green = kaolin with heparinase (KH) Black = kaolin only (K)

Cardiac

When	Test/Assay	Blood Sample
Baseline Either day before or on induction Prior to heparin and hemodilution	PlateletMapping®	 2 types of samples are needed for PlateletMapping[®]: 1 non-heparin tube for the Kaolin test 1 heparin tube for all other tests in the PLM assay
Re-warm Blood temperature 35-36° C (20 mins prior to coming off bypass)	Kaolin in Heparinase Cup	1 non-heparin tube
Post-Protamine Ten mins post protamine (same time as ACT draw)	Kaolin in Plain Cup Kaolin in Heparinase Cup	1 non-heparin tube
Post Op Two hours post protamine (ICU sample)	Kaolin in Plain Cup Kaolin in Heparinase Cup	1 non-heparin tube

Protocols (page 1 of 2)

Protocols (page 2 of 2)

Condition	TEG Test*	Guides determination of			
Arrival to Emergency Department					
Baseline	PlateletMapping® with Kaolin Kaolin Heparinase	Coagulopathies			
	Resuscitation and Treatment				
Treatment decisions for bleeding	Kaolin	Function of hemostatic components: platelet, factor, fibrinolytic function			
Stabilization and Recovery					
Bleeding	Kaolin	Therapy choice and effectiveness			
Thrombotic	Kaolin	Therapy choice and effectiveness			
Anticoagulant (Heparin, LMWH)	Kaolin vs. Kaolin Heparinase	Effect of anticoagulant			
Antiplatelet therapy	PlateletMapping	Platelet function via ADP and AA			

* Kaolin and Kaolin Heparinase can be citrated.

* A repeat TEG test should always be performed after treatment.

* Functional Fibrinogen (FF) is an option for testing, along with Kaolin, to further assess fibrinogen function.

Parameter		TEG Result	Notes
	Long		
R			
	Short		
MA	Low		
	High		
LY30	High		

Test Heading	TEG Result	Notes

Copyright © 2008-2010, 2017 Haemonetics Corporation. Haemonetics, Thrombelastograph and TEG are trademarks or registered trademarks of Haemonetics Corporation in the US, other countries, or both. PlateletMapping is a registered trademark of Coramed Healthcare, Inc.

06.2017 USA. P/N 06-538-US(AB)

TEG⁵⁰⁰⁰ **PlateletMapping**[®] **Interpretation Guide**

The PlateletMapping assay specifically determines the MA (Maximum Amplitude, a measure of clot strength) and the reduction in MA due to genetics, surgical procedures and/or antiplatelet therapy.

Platelet receptor function of $MA_{AA \text{ or }ADP}$ represents the contribution of platelets not inhibited and should be assessed relative to the full platelet function of $MA_{CK/CKH}$ and no platelet contribution of MA_A .

Inhibition is calculated automatically by comparing the MA of an agonist (AA or ADP) with that of both full platelet function and no platelet contribution.

The analyzer reports the reduction of MA as a percentage of inhibition and inversely as a percentage of aggregation.

	Clot Strength Full Platelet Function	Clot Strength No Platelet Contribution	Clot Strength AA Receptor Function	Clot Strength ADP Receptor Function
Test - Parameter	MA _{CK/CKH}	MA _A	MA _{AA}	MA _{ADP}
Reagent	CaCl₂₊Kaolin/ Kaolin Heparinase	Activator F	Activator F + AA	Activator F + ADP
Hemostatic Activity	Provides baseline uninhibited clot strength. Thrombin over- rides the inhibitory effects of receptor specific inhibition. Also provides underlying TEG profile for identification of other suboptimal coagulative states.	Provides clot strength without platelet participation. Activator F replaces thrombin's role in the conversion of fibrinogen to fibrin and FXIII's role in cross-linking.	Provides AA induced clot strength, showing inhibitor effect from aspirin, etc. Comparison to MA _{CK} /CKH reflects any reduction in MA due to anti-platelet therapy.	Provides ADP induced clot strength, showing inhibitor effect from clopidogrel, etc. Comparison to MA _{CK/CKH} reflects any reduction in MA due to anti-platelet therapy.
Normal Tracings	МАск/скн	MAA	МА	MAADP

Results from the TEG analyzer should not be the sole basis for a patient diagnosis, but should be evaluated together with the patient's medical history, the clinical picture and, if necessary, other coagulation tests.

TEG⁵⁰⁰⁰ **PlateletMapping**[®] **Interpretation Guide**

In general terms, the closer the ADP or AA response is to the fibrin only (no platelet contribution) result, the more inhibited that receptor is. A low % inhibition (values nearer 0%) means there is little or no effect on platelet activation. A high % inhibition (values nearer 100%) means that there is a large effect on platelet activation. The significance of inhibition will vary dependent upon the agonist, the clinical situation, the specific therapy and the underlying TEG hemostasis profile (clot rate, clot strength and clot stability).

AA function (MA_{AA}) represents the contribution of platelets not inhibited by aspirin and/or GPIIb/IIIa platelet inhibitors

For a list of worldwide office locations and contact information, visit www.haemonetics.com/officelocation

© 2018 Haemonetics Corporation, Haemonetics and TEG are trademarks or registered trademarks of Haemonetics Corporation in the USA, other countries or both. PlateletMapping is a registered trademark of Cora Healthcare, Inc. 02.2018 USA. TRN-QRG-100095-US(AA)

